Table of Contents

Table of Contents	i
Table of Figures	IV
INTRODUCTION AND PROJECT OVERVIEW	1
DATA COLLECTION METHODS AND EVALUATION OVERVIEW	2
Data Collection Method 1: Review of project materials	2
Data Collection Method 2: Surveys	2
Data Collection Method 3: Communications with Principle Investigators	3
Data Collection Method 4: Site Visits (including classroom observations, interviews,	
and artifact collection) of institutions using the materials with undergraduate (and	
graduate) students	3
Schools and Instructors Visited (descriptions)	3
University of Texas at Austin, Austin, TX	4
Amherst College, Amherst, MA	4
Williams College, Williamstown, MA	4
Emory University, Atlanta, GA	5
Agnes Scott College, Atlanta, GA	5
ASSESSING THE PROJECT OBJECTIVES	6
Specific Aim #1: To restructure, refine, and add features to the existing tutorials	6
(a) Restructuring	6
(b) Explaining the equivalent circuit	10
(c) Adding new channel types	11
(d) Relating NIA to health and physiology	12
(e) Taking advantage of increased computer speed	13
(f) Leading students to understand the limits of the voltage clamp technique	14
(g) Major changes to existing threshold and synapse tutorials	14
(h) Minimovies for faculty to introduce the tutorials to students	16
(i) Project "Detour" – Restructuring the Interface and Other Tutorial-related	
Issues	18
Interface and Systems-Related Issues	21
Tutorial Content-Related Issues	22
Interface and Systems-Related Wish-list Items	23
Tutorial Content-Related Wish-list Items	24
Specific Aim #2. To extend the range of NIA downward to the chatter of single	
channels and upward to the behavior of simple circuits	25
(a) New tutorial in single channel behavior	25
(b) New tutorial for modeling a simple network	29
Specific Aim #3. To add new tutorials to the original prototype.	30
NIA2 PROJECT IMPACT AND CASE STUDIES	32
Overall Project Impact of NIA2 on the Neuroscience Education Community	32

How are the materials being used in the undergraduate classroom?	32
Undergraduate Institutional Use Examples from the Initial NIA2 Survey	33
Mount Holyoke College	33
University of Maryland	34
City University of New York	34
University of Evansville	34
Dominican University	34
University of Wisconsin Madison	35
Other Undergraduate Institutional Use Examples	35
Grinnell College	36
Pomona College	36
Cornell University	36
How are the materials being used in the graduate classroom?	38
Graduate Institutional Use Examples from the Initial NIA2 Survey	39
University of North Carolina Chapel Hill School of Medicine #1	39
University of North Carolina Chapel Hill School of Medicine #2	39
University of North Carolina Chapel Hill School of Medicine #3	39
University of Maryland	40
Emory University	40
University of Wisconsin Madison	40
Other Graduate Institutional Use Examples	40
What do users like and dislike about NIA2?	45
What have instructors (and future instructors) learned from NIA2?	48
What recommendations do instructors have for future instructors?	49
How do we get more instructors to use NIA2?	51
Case Studies	52
Case Study 1: The University of Texas at Austin, Austin TX	53
University of Texas at Austin Class Observations	53
University of Texas at Austin Informal Interview with Instructor Nace	
Golding	58
University of Texas at Austin Informal Interview with Jennifer Morgan	59
Case Study 2: Amherst College, Amherst MA	62
Amherst College Class Observations	62
Amherst College Informal Interview with Instructor Steve George	66
Case Study 3: Williams College, Williamstown, MA	67
Reflections on William College's BIOL 304 Neurobiology with NIA2	68
Reflections on William College's NEURO 201 Introduction to Neuroscience	
with NIA2	70
Case Study 4: Emory University, Atlanta, GA	72
Emory University Class Observations	73
Emory University Student Focus Group Comments	76
Emory University Faculty Interviews, Surveys, and Follow-up	
Correspondence	77
Case Study 5: Agnes Scott College, Atlanta, GA	79
Agnes Scott College Class Observations	80
Agnes Scott College Focus Group Discussion with Students and Instructor	82

UGGESTIONS FOR FUTURE DIRECTION AND CONCLUDING COMMENTS Suggestions for Future Directions Concluding Comments	84 84
	86
APPENDICES	
A: Goals for Basic and Advanced Tutorials in Current Version of NIA2	A-1
D. Coole for Device and Advanced Testanicle in Comment Manian of NIA2	1 2

B: Goals for Basic and Advanced Tutorials in Current Version of NIA2	A-2
C: NIA2 Minimovie Titles by Topic	A-3
D: Cornell University BioNB 491/BMEP491 Course Syllabus and Calendar	A-4
E: Institutions That Have Purchased NIA2 as of November 2008	A-7
F: University of Texas at Austin Bio 365L Lab Manual Section 3 Excerpt	A-9
G: University of Texas at Austin's BIO365L NIA2 Na Action Potential Lab	
Handout	A-16
H: University of Texas at Austin Bio 365L Lab Manual Laboratory 4 Excerpt	A-19
I: Amherst College Biology 35 Lab Instructions	A-23
J: Amherst College Biology 35 Exam 2	A-24
K: Williams College NEURO 201 NIA2 Lab	A-26
L: Emory University's BIO 360L/NBB 301L Course Syllabus	A-33
M: Emory University BIO 360L/NBB 301L Coincidence Detection Lab 10 Notes	A-36
N: Emory University BIO 360L/NBB 301L Coincidence Detection Homework Set	A-41
O: Emory University BIO 360L Teaching Assistant's Poster Presentation on	
Teaching Neuroscience with NIA2 at Society for Neuroscience Conference	A-43
P: Agnes Scott College Biology/Psychology 250 Foundations of Neuroscience 1:	
Excitable Cells and Synapses Course Syllabus	A-44
Q: Agnes Scott College Biology/Psychology 250 Foundations of Neuroscience 1:	
Action Project Assignment	A-47
R: Agnes Scott College Student's Components of Na and K Channel Excitability	
Project Presentation Slides	A-49
S: Agnes Scott College Agnes Scott College Biology/Psychology 250 Foundations	
of Neuroscience 1: Action Project Assignment Grading Rubric	A-54
T: Agnes Scott College Student's Gabaergic Synapses: Target for psychoactive	
drugs, search for drugs and inhibition Project Presentation Slides	A-55
U: Agnes Scott College Student's Partial Demyelination: the problem with MS	
Project Presentation Slides	A-58

Table of Figures

Figure 1: Planned Tutorials as Stated in NSF Proposal	7
Figure 2: NIA2 Current Tutorials	7
Figure 3: Current Status of Proposed Restructuring Sub-Goals	8
Figure 4: Interactive Equivalent Circuit Link in Axon Tutorials Reference Section	11
Figure 5: Equivalent Circuit Diagram with Links to Associated Graphs for Membrane	
Capacitance, Na, and K Currents	11
Figure 6: Current Status of Proposed New Channel Sub-Goals	12
Figure 7: Link to Voltage Clamp Technique Materials within the Voltage Clamping a	
Patch Tutorial	14
Figure 8: Phase Plane Plot Investigation in NIA2 Dynamic View of Threshold Tutoria	15
Figure 9: Na Action Potential Patch INa "Kinky" Graph	23
Figure 10: Investigating Ohm's Law in the Chattering Ion Channels Tutorial	26
Figure 11: Normalized Current versus Time Plot in the Chattering Ion Channels Tuto	rial 28
Figure 12: Cornell Student Reactions to NIA2	38
Figure 13: SPINES Participant Reactions to NIA2	42
Figure 14: University of North Carolina Chapel Hill Student Reactions to NIA2	42
Figure 15: SPINES Participant Reactions to the Structure of NIA2	43
Figure 16: Ion Channel Structure from Evaluator's UT-Austin Field Notes	55
Figure 17: Activation-Inactivation-Deactivation Cycle Notes from Evaluator's UT-Au	istin
Field Notes	56
Figure 18: Students struggled with this graph in the Neuromuscular Junction Tutorial	65
Figure 19: Basic Channels Circuit Diagram Used in Emory Class	74
Figure 20: Circuit diagram Used in Emory Class to Introduce New Channels for	
Coincidence Detection Tutorial	74
Figure 21: Group Results From Coincidence Detection Tutorial	75